Defect Diagnosis Using a Current Ratio Based Quiescent Signal Analysis Model for Commercial Power Grids

نویسندگان

  • Chintan Patel
  • Ernesto Staroswiecki
  • Smita Pawar
  • Dhruva Acharyya
  • James F. Plusquellic
چکیده

Quiescent Signal Analysis (QSA) is a novel electrical-test-based diagnostic technique that uses IDDQ measurements made at multiple chip supply pads as a means of locating shorting defects in the layout. The use of multiple supply pads reduces the adverse effects of leakage current by scaling the total leakage current over multiple measurements. In previous work, a resistance model for QSA was developed and demonstrated on a small circuit. In this paper, the weaknesses of the original QSA model are identified, in the context of a production power grid (PPG) and probe card model, and a new model is described. The new QSA algorithm is developed from the analysis of IDDQ contour plots. A “family” of hyperbola curves is shown to be a good fit to the contour curves. The parameters to the hyperbola equations are derived with the help of inserted calibration transistors. Simulation experiments are used to demonstrate the prediction accuracy of the method on a PPG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High Frequency Grid Impedance Estimation Technique for the Frequency Range of 2 to150 kHz

Grid impedance estimation is used in many power system applications such as grid connected renewable energy systems and power quality analysis of smart grids. The grid impedance estimation techniques based on signal injection uses Ohm’s law for the estimation. In these methods, one or several signal(s) is (are) injected to Point of Common Coupling (PCC). Then the current through and voltage of ...

متن کامل

Grid Impedance Estimation Using Several Short-Term Low Power Signal Injections

In this paper, a signal processing method is proposed to estimate the low and high-frequency impedances of power systems using several short-term low power signal injections for a frequency range of 0-150 kHz. This frequency range is very important, and thusso it is considered in the analysis of power quality issues of smart grids. The impedance estimation is used in many power system applicati...

متن کامل

Variable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes

Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...

متن کامل

A Current Ratio Model for Defect Diagnosis using Quiescent Signal Analysis

I DDQ test has been used extensively both as defect reliability screen and as a defect diagnostic technique. However, the increase in subthreshold leakage currents in deep sub-micron technologies has reduced the effectiveness of I DDQ in these applications. Quiescent Signal Analysis (QSA) is a novel diagnostic technique that uses I DDQ measurements made at multiple supply pads on the Chip-Under...

متن کامل

A New Procedure for Determining Current Harmonic Contribution around an Operation Point at PCC Using Load Modelling Based on Crossed Frequency Admittance Matrix

Abstract:Today, one of the important issues of power quality (PQ) in power systems is the current harmonics. Increasing expansion of nonlinear loads at different parts of the electric network makes harmonic distortion flow through the network. This causes the network to have background voltage and current harmonic distortion and even affect on the PQ of linear load performance. Therefore, it is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Electronic Testing

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2003